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We consider a symmetric translation-invariant random walk on the d-dimen- 
sional lattice Z d. The walker moves in an environment of moving traps. When 
the walker hits a trap, he is killed. The configuration of traps in the course of 
time is a reversible Markov process satisfying a level-2 large-deviation principle. 
Under some restrictions on the entropy function, we prove an exponential upper 
bound for the survival probability, i.e., 

lim sup ~ log P( T~> t) < 0 

where T is the survival time of the walker. As an example, our results apply to 
a random walk in an environment of traps that perform a simple symmetric 
exclusion process. 

KEY WORDS:  Dynamic trap model; level-2 large-deviation principle; 
reversible Markov process; environment process; killing function; range of 
random walk. 

1. INTRODUCTION 

T h e  t r a p p i n g  p r o b l e m  is one  in which a par t ic le  m o v e s  a b o u t  r a n d o m l y  in 

a space c o n t a i n i n g  r a n d o m l y  loca ted  t raps  which m a y  o r  m a y  no t  them-  

selves be mob i l e  (see ref. 1 for a review on  the different  mode l s  and  appl ica-  

t ions of  t rapping) .  T h e  q u a n t i t y  of  interes t  is the surv iva l  t ime T. M o r e  

precisely,  one  wants  to s tudy the a sympto t i c s  for t ~ oo of  the p robab i l i t y  
P ( T > ~ t )  tha t  the par t ic le  remains  u n t r a p p e d  at least  du r ing  the t ime 

in te rva l  [0, t). 
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In the case of simple random walk in a static Bernoulli distribution of 
traps, this problem reduces to the study of the large-deviation properties of 
the range R, (i.e., the number of distinct sites visited by the walker after n 
steps). The result is ~4~ 

logP(T>~t)~ - )~ . t  a/(a+2) (l---~cX3) (1.1) 

where d~> 1 is the dimension and ). is a constant which depends on the 
dimension and the density of traps. 

When we turn to the case of moving traps, much less is known. 
In general it is believed that P(T>~t) decays exponentially fast (ref. 1, 
Section 6b), but as far as we know, no rigorous results have been obtained. 

In the present paper we consider a particle in an environment of 
moving traps. The process of the trap configuration as function of time is 
assumed to be a reversible Markov process that satisfies a level-2 large- 
deviation principlC 5"3~ with some extra technical conditions on the entropy 
function. The random walk of the particle and the process of moving traps 
are independent processes. We prove an exponential upper bound for tke 
asymptotics of P(T>~ t). More precisely, we prove that 

1 
lim sup - log P(T>_- t) < 0 

t ~ o O  / 

(L2) 

As an example our result applies to a simple random walk on 7/d in an 
environment of traps that perform a simple symmetric exclusion process 
starting from a Bernoulli measure. 

The paper is organized as follows. In Sections 2 and 3 we introduce 
the process of moving traps, and the random walk to be trapped. In 
Section 4 we introduce the environment process, i.e., the process of trap 
configurations as seen from the position of the random walker. We 
calculate its generator and study its reversible and ergodic measures. In 
Section 5 we define the trapping problem and introduce the survival time. 
In Section 6 we discuss the large-deviation conditions that the process of 
moving traps has to satisfy in order to get (1.2). In Section 7 we prove 
(1.2), and in Section 8 we discuss some examples. 

2. THE PROCESS OF M O V I N G  TRAPS 

Let E be a Polish space and 8 its Borel a-field. An element r/e E 
is called a configuration of traps. We denote by H(E, E) the group of 
homeomorphisms of E into itself, i.e., 

H( E, E) = { q~: E --* EI ~o is a continuous bijection } (2.1) 



Dynamic Random Trap Model 817 

We suppose that there exists a group homomorphism 

~: Zd ~ H(E, E) (2.2) 

For r/e E, x E 7] d, the element z=r/= r (x ) ( r / )eE  is interpreted as the con- 
figuration r/shifted by x, or the configuration q as seen from position x. For 
a continuous function f :  E ~  R we define zxf: E ~  R by z.J(r/)  =f(z.,r/), 
and for a probability measure p E ~(E),  we define r=p by 

I= (2.3) 
The process of moving traps is assumed to be a Feller process on E 
denoted by {q,: t~>0}. The path space measure of this process starting 
from q ~ E is denoted by Pff. This is a measure on the space of cadlag 
trajectories on E, 

f 2 r =  D([0, oo), E) (2.4) 

The Borel a-field on f2 r is denoted by z# r. The generator of the Feller 
process { q,: t >10 } is denoted by Lo, i.e., 

Lof(q) = lim F~'f(r/,) - - f (q )  (2.5) 
tl .0 l 

Assumption 1. The domain D(Lo) of the generator is translation 
invariant, i.e., for all f ~  D(Lo), z.~f~ D(Lo) for all x~  Z d. Next the process 
{r/,:t~>0} has a reversible and ergodic translation-invariant measure 
/~eq e ~(E) ,  i.e.: 

(1) L0 is self-adjoint on. LZ(/aeq). 

(2) #cq is ergodic for the process {q,: t~>0}. 

(3) ~'X/-~r =/2eq, V x e Z  a. 

Inner product in L2(/~r is denoted by (.,.). 
When starting from /aoq the process of moving traps is reversible and 

ergodic. Its path space measure is denoted by 

r _ (2.6) 

3. THE R A N D O M  W A L K  

The random walk is a Markov process {X,' t~>0} on Z d with 
generator 

LRwf(x)= ~ p(x, y ) [ f ( y ) - - f ( x ) ]  (3.1) 
.V ~ Z d 
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Assumption 2. p(x, y) is a symmetric translation-invariant trans- 

4. THE E N V I R O N M E N T  PROCESS 

The environment process (EP) is the configuration of traps as seen 
from the position of an independent random walk {X,:t>~0}. More 
precisely, it is the process 

{Zx, q,:t>_.O} (4.1) 

defined on the probability space 

(Orxi2Rw, ~r174 r Rw P,  |  ) (4.2) 

i.e., walk and environment of moving traps are independent. 
In the following proposition we identify the generator of the EP. 

P r o p o s i t i o n  4.1. {rx, q,: t>~0} is a Markov process with generator 
L given by 

Lf(q) = Lof (q)  + L, f (r l )  (4.3) 

where Lo is defined in (2.5) and 

Proof. 
concentrate on proving (4.3) and (4.4). Let ~, be expectation w.r.t, the 
process {rx, q,: t>~0} starting at qeE.  Then we can write 

L , f ( q )  = ~ p(O, y ) [ f ( ~ y q ) -  f (q) ]  
Y 

= [LRw~l) f (q)](O) (4.4) 

The Markov property of {Tx, q,:t>~O} is evident, so we 

ition probability on 7/d, i.e., 

p(x, y) = p(y, x) = p(O, y -- x) >10 

(3.2) 
p(x, y ) =  1 

y e Z d 

Let p~w be the path space measure of the process {X," t>~0} starting 
at x. This is a measure on the space of cadlag trajectories on ~,a denoted 
by f2RW=D([0, oo), 7/a). The transition probability at time t is denoted 
by p,(0, x), i.e., 

p,(O, x) = PoRW(x, = x) (3.3) 

The random walk {X,:t >/0} starts at the origin, i.e., Xo = 0. 
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E, f(r/,) - -f(q)  
l 

I-} d(P~|  po"W)/(~x ,~,)-I - f(,~) 
t 

= ~ p,(O, x) [g. r f (L~q,)_f (q)]  
t 

X 

X 

I2.,- p,(O, x)[~.,.f(~)- ~of(n)] + (4.5) 

Taking the limit t J,0 in the r.h.s, of (4.5) yields 

Lf(q) = ~ 6O.x(LoL~f)(q) + [ZRw't(.)f(rl)](0) 
x 

= Lof(q) + L, f (q)  (4.6) 

This proves the claim. �9 

P r o p o s i t i o n  4.2. The m e a s u r e  ]Aeq 
the EP. 

Proof. For reversibility we have to show that L is self-adjoint on 
L2(/.t~q). By translation invariance of J[/--eq and by symmetry and translation 
invariance of the probability kernel p(x, y), it is easy to see that Lt is a 
self-adjoint bounded operator on L2(/~eq). Since Lo is self-adjoint by 
reversibility of i~eq, the generator L = Lo + LI is self-adjoint on L2(/~eq). 

In order to prove ergodicity, suppose that f ~  L2(#eq) satisfies L f =  O. 
Then we have to prove that f =  ~f(q)/teq(dr/) p~q-a.s. Now, L f =  0 implies, 
with the help of Proposition 4.1, 

is reversible and ergodic for 

(f, L f )=  (f, Lof)  + (f, L , f ) = 0  (4.7) 

By nonnegativity of both ( - L o )  and ( -Lz ) ,  this in turn implies 

( f  L o f ) =  (f, L ] f )  = 0 (4.8) 

By the spectral theorem for the self-adjoint nonnegative operator - L o ,  we 
have 

f; (f, - L o f ) =  2 EH(dk) (4.9) 
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where Ef.f(d2) is the spectral measure of ( - L o )  associated t o f  Combining 
(4.8) and (4.9), we conclude 

2 = 0  EH(d2)-a.s. (4.10) 

Therefore 

fo~ 22Ej:f(d).) = (Lof, Lo f )  = 0 (4.11) 

and hence Lof(~/)=O, peq-a.s. Because Peq is ergodic for the process 
of moving traps {q,:t>~O}, the latter in turn implies f=Sf(tl)l.tcq(drl) 
Peq-a-s- �9 

5. THE TRAPPING M O D E L  

We introduce a killing function 

q~: E ~  [0, oo) (5.1) 

and assume that 4~ is continuous and such that 

P = I Ueq(dq) ~(q) ~ (0, ~ )  (5.2) 

Given q~, given a configuration of traps q ~ E, and given x ~ 2U, we say that 
x is a trapping point o f  q iff 

r  (5.3) 

Given the walk {X,: t~>0} (Xo=0)  defined in Section 3 and the process 
of moving traps {q,: t~>0} defined in Section 2, we say that the walker is 
killed at time t when X, is a trapping point of q,, i.e., when 

�9 (rx, q,) > 0 (5.4) 

We can then introduce the survival time T of the walker: 

T = sup { t >/0 [ the walker is not killed at time s, Vs ~ [0, t) } (5.5) 

6. LARGE-DEVIATION C O N D I T I O N S  ON THE PROCESS 
OF M O V I N G  TRAPS 

In order to prove an exponential estimate for the survival time T, we 
impose some large-deviation conditions on the process of moving traps. In 
Section 8 we shall give some examples where these conditions are satisfied. 
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Define the empirical distribution at time t > 0 by 

s ~ ds 6, ~(E) 

By the ergodic theorem 
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(6.1) 

r (6.2) lim LP, = ,cq Pu0:a-s. 
I ~ o o  

Assumption 3. 
{ ~ : t > 0 }, i.e., 312 : ~(E)  --* R + lower semicontinuous such that: 

We impose the large-deviation principle (LDP) for 

(1) VFc#(E) closed 

(2) 

1 T 
lim sup t log P~.(L~, e F) ~< - inf 12(.) 

t ~ ct:~ , u E F  

VG c : ' (E)  open 

T lim inf -1 log pu~q(s s G) 1> - inf 12(.) 
t ~ v  t , u ~ G  

(6.3) 

(6.4) 

Moreover, we suppose that the entropy function 12 is the lower semi- 
continuous modification of the Dirichlet form, i.e., 

12( , )= lim inf 72(,') (6.5) 
t : . ~ O  p'~ B(~,~) 

where B(.,  e) is the weakball  of radius e and centered a t . ,  and 

(( d. ~,,2 Lo)( d__~ ~,/2 ~ (6.6) 
72(.)=\\~/ �9 (- \a.r / 

This condition on the entropy function is natural in the reversible context 
(ref. 3, Section 5.3). If the r.h.s, of (6.6) is not defined, then we put 
7d. )=  oo. 

By (6.3), (6.4), and the contraction principle, (s) the collection 

satisfies the LDP with entropy function 

/ ,(x) = inf { 1 2 ( . ) . ~ ( E ) a n d  f q~(q).(d~/) = x} (6.7) 
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By (5.2) and the ergodic theorem, I~(p)=0. 
following nondegeneracy condition on I=: 

Assumption 4: 

I~(x) = 0 .~ x = p 

We finally 

Redig 

impose the 

(6.8) 

7. EXPONENTIAL ESTIMATE FOR THE S U R V I V A L  T I M E  

Our main theorem reads: 

T h e o r e m  7.1. If {q,: t~>0} satisfies the large-deviation conditions 
of Section 6, then 

1 

lim sup - log Pu~(T~ t) < 0 (7.1) 

Proof. Abbreviate P~oq:= P: 

P(T>~ t) = P(~( rx  r/~) = 0 Vs ~ [0, t)) 

=P(~cb(~x,q~.)ds=O) 

= P (exp [ -  I~ ~(~ x~qs) ds] >~ l ) 

<~Eexp[-Ii~(~xrls) ds ] (7.2) 

where the first step follows from the nonnegativity of the killing function 
and the last step from the Markov inequality. By Proposition 4.2, the 
generator of the EP is self-adjoint on L2(~eq). Therefore, by the spectral 
theorem and the Feynman-Kac formula, we have 

~logEexp[-f~<b(~x~qs)dsl~A (7.3) 

where A is the greatest eigenvalue of the self-adjoint 
_ q5 + Lo + LI. By using the variational formula for the greatest eigenvalue 
of a self-adjoint operator, we obtain 

operator 
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A =  sup [f  -~(tl)  g2(tl)la~q(dtl)+(g, Log)+(g,L,g)] 
g:  ~ g2 dt(cq = I 

dp 1/2 d/z 1/2 

, s u p  [ - f  ~(q)/~(dq)-12(/~)] (7.4) 
~ e .~ ' (E)  

Here the last step follows from (6.5), (6.6), and the fact that - L ,  is 
nonnegative on L2(/aeq). 

At this stage the random walk is totally out, i.e., the RHS of (7.4) is 
a function of the process of moving traps only. By Varadhan's formula 

= ,-~lim ll~ (7.5) 

By (6.6) and Varadhan's formula 

,~lim -tl log rFr exp - ~(rl,) ds 

T --  t~t  =lim log E,~qe 

= sup [ - x - I i ( x ) ]  (7.6) 
x E R +  

Because p > 0, it follows from the lower semicontinuity of 11 and from the 
nondegeneracy condition (6.8) that 

sup [ - x - l , ( x ) ] < O  (7.7) 
X E R +  

Hence we have proved Theorem 1. �9 

8. EXAMPLES 

8.1. A Random Walker in a Simple Symmetr ic  Exclusion 
Process o( ~ Traps 

In this example the process of moving traps {r/,: t 1> 0} is the simple 
symmetric exclusion process (SSE). This means 

E =  {0, 1} za (8.1) 
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with the interpretat ion r / (x )=  1 when there is a t rap at x, r / ( x ) = 0  
otherwise. The t rapping points are the points for which r / (x )=  1, and 
therefore 

�9 (q) = q(0) (8.2) 

The generator  of SSE is given by 

L o f ( q ) =  ~ ~ ~d [f(r /  ..... + e ) _ f ( r / ) ]  (8.3) 
x ~ / , a '  e ~ Z a :  l e l  = 1 

where q.,-.x+e is obtained from q by exchanging the occupat ions at lattice 
points x and x + e, i.e., 

qx.x+e(y) = q(y)(1 - 6.,,.x - 6,..x + ~) + q(x) 6.,. x+ e + q(x + e) 6v.x (8.4) 

For  the existence and the ergodic theorems of this process we refer to ref. 7, 
Chapter  VIII ,  Section 1. The reversible and ergodic measures for SSE are 
the Bernoulli measures { Vp : p e [0, 1 ] } defined by: 

(1) ~v(d~)~tO)=p. 
(2) Under  vp, {q(x): x ~ E  a } is an i.i.d, r andom field. 

Therefore we can pick 

/teq = v p with 0 < p < l  (8.5) 

The large-deviation conditions of Section 6 are proved for SSE by 
Landim r for d~> 3. We thus obtain: 

Corollary 8.1.  Let T be the survival time of a r andom walker in an 
environment  of traps that perform an independent SSE on Z d with d~> 3, 
starting from vp (p ~ (0, 1)). Then 

1 
lim sup t log P(T>~ t) < 0 (8.6) 

8.2. A Random Walker in a Simple Zero-Range Process of 
Traps 

In this example the process {q, : t >/0} is the simple zero-range process 
(SZRP).  This is an infinite system of independent simple r andom walkers. 
In this case 

E =  ~ l ,  (8.7) 
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where q(x) represents the number of traps at lattice site x. The traps are 
the points where r / (x)~ 0, i.e., the killing function can be taken 

�9 (~)=~(0)  (8.8) 

The generator of SZRP is given by 

L 0 f ( q )  = E E 
x c Z a e c  Za:  le l  = l 

q(x) l [f(rl ...... + e ) _ f ( q ) ]  (8.9) 

where qx, x+,, is obtained from q by removing a trap at lattice site x and 
putting it at x + e, i.e., 

(8.10) rl""~ +e(y )=q(y ) - - t~  y..~ + CS ,,,x +e 

The reversible and ergodic measures for SZRP are the Poisson measures 
{/~p: p ~ (0, 8)} defined by: 

(1) l a p ( q ( x ) = n ) = ( p " / n ! ) e  -p. 

(2) Unde r /G ,  {q(x) : x E Z a }  is an i.i.d, field. 

Therefore, we can pick 

/aeq = pp with p > 0  (8.11) 

The large-deviation properties of Section 6 are easily verified in dimension 
d~> 3 with the help of ref. 2. Therefore we obtain: 

Corollary 8.2. Let T be the survival time of a random walker in an 
environment of traps that perform an independent SZRP starting f rom/G,  
p > 0 .  Then in d>~3 

1 
lim sup t log P(T>~ t) < 0 (8.12) 

t ~ o o  

9. A R A N D O M  W A L K E R  IN A S I M P L E  Z E R O - R A N G E  PROCESS 
OF TRAPS:  LOWER B O U N D  

In the general context of Theorem 7.1 we did not succeed in proving 
an exponential lower bound. In the case of SZRP discussed in Section 8.2 
we can derive an explicit formula for P(T>~ t) containing the range of a 
random walk (Lemma 9.1 below). From this formula we can derive a lower 
bound and we can deal with the lower-dimensional case (i.e., d~<2) in 
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which P(T>>.t) decaays subexponentially. First we introduce some more  
notation. For  r / �9  I~l z the SZRP starting from r/is a collection of indepen- 
dent r andom walks 

(({X;Y(t): t> -0  ~ " c x J ~ /  J,i=l,~E~o" (9.1) 

Given a simple r andom walk X : { X ( t ) : t > ~ O }  ( X o = 0 )  we use the 
notat ion Px for its path  space measure and E x for the corresponding 
expectation. For  a process Z =  {Z(t): t~>0} on 7/a we define the range at 
time t: 

R(Z, t ) = ~  l {z ( , ,=xr  o . . . . . . . .  [o.,]} (9.2) 
x 

For simple random walk we abbreviate R(X, t)=R,. Final ly for two 
processes X and Y on E d we define X - - Y  to be the pointwise difference, i.e., 
X -  Y =  {X ( t ) - -  Y(t): t~>0}. 

In L e m m a  9.1 below we prove that  the survival probabil i ty  P(T>~ t) of 
Corol lary 8.2 can be written as a function of the range of the difference of 
two independent r andom walks. 

L e m m a  9.1. Let T be the survival time of a simple r andom walker 
in an environement  of traps that perform an independent SZRP on 77 d 
starting from pp. Then 

P(T>~ t) = F x [ exp[  --plF r R ( X - -  Y, t ) ] ]  (9.3) 

Proof. 

P( T>~ t) = f #p(drl) P (Xi~(s) - X(s)  4= 0 Vi = 1 ..... q(x), Vx, Vs �9 [0, t)) 

q(x) 

"~ qlx ) 

= f dPx 1-I [ e x p ( - - p )  exp(pP r { Y(s) r X(s)  + x Us �9 [0, t)} )] 
x 

. r  

= f d P x e x p [ - p f d P r R ( Y - X , t ]  (9.4) 
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Here in the second step we used the independence of the walkers in the 
SZRP and in the fifth step we used the Poisson caracter  of pp. �9 

T h e o r e m  9.2 .  In the context of Lemma 8.3: 

P( T>~ t) >t e x p ( - p E R 2 , )  (9.5) 

ProoL F r o m  (9.3) and Jensen's inequal i ty  we conclude 

P(T>~ t) > . > - e x p [ - p E x E r R ( X -  Y, t ) ]  (9.6) 

Since the difference of two independent  simple r andom walks is a simple 
random walk at  twice the speed, we obta in  

E x E r R ( X -  Y, t ) =  IER2, (9.7) 

Combina t ion  of (9.6) and  (9.7) yields the claim. �9 

F r o m  the theory of simple r andom walk we know that  t8J 

ER2 ,~ (2 t )  ~/2 ( t - - .oo)  i n d = l  

2nt 
(t ~ oo) i n d = 2  (9.8) 

log(2t)  

~2~dt  ( t ~ )  ind>~3  

where 7d is the probabi l i ty  of never returning to the origin. 
Therefore, Theorem 9.2 yields a subexponent ia l  decay of P(T>~ t) in 

dimension d>~ 2, and an exponent ia l  lower bound  in d~> 3. 
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